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Rebbi's efficient multispin coding algorithm for Ising models is combined with 
the use of the vector computer CDC Cyber 205. A speed of 21.2 million 
updates per second is reached. This is comparable to that obtained by special- 
purpose computers. 
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1. INTRODUCTION 

Monte Carlo simulation of the Ising model has been improved by various 
techniques during the last few years. The most efficient methods are the 
multispin coding technique for general-purpose computers ~1,2) (such as the 
IBM 370/168 or CDC Cyber 176), the use of special-purpose computers, ~3) 
and array processors. ~4) The multispin coding technique is based on the bit 
logical operations of a general-purpose computer. Monte Carlo simulation of 
the three-dimensional Ising model using this technique has been performed 
with a speed of up to 1.6 million updates per second on a CDC Cyber 
176. ~2'5) Special-purpose machines realize the algorithm by an appropriate 
hardware structure. Their speed is up to 25 million updates per second, 
which is 16 times the speed of multispin coding on a scalar computer. 
Finally, the array processor is a set of paralMy working microprocessors. 
These processors can simultaneously work on and store different parts of the 
lattice due to the locality of the Monte Carlo algorithm. Speeds up to 
9.5 million updates per second are reached when applying this method.~4) 

1 Institut ffir Theoretische Physik der Universitiit zu K61n, Z/ilpicher Str. 77, 5000 K61n 41, 
West Germany. 
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In view of the speed reached by special-purpose machines, it is an 
exciting question whether it is possible to reach comparable speedups by 
using a faster general-purpose machine such as the vector computer CDC 
Cyber 205. A speedup factor of 13 above the CDC Cyber 176 program ~2) 
and an absolute speed of 21.2 million updates per second on a two-pipe 
500K CDC Cyber 205 of the state of Nordrhein-Westfalen located at 
Bochum University, West Germany, were reached using the multispin coding 
technique. 

2. MULTISPIN CODING ON THE SCALAR COMPUTER 
CDC CYBER 176 

The multispin coding technique is explained in detail in the 
literature. (1'2) A modified version of the standard program is given here to 
facilitate understanding of the vector algorithm presented later. This program 
runs on a CDC Cyber 176 with 60-bit words. 

The configuration (up-down encoded by 1-0) of 20 spins is stored in 
one computer word, using three bits per spin. This allows the addition of the 
values of the logical difference (XOR) to all six neighbors for each of these 
spins simultaneously while calculating the interaction energy. This precludes 
that next neighbors are stored in different words. Thus the minimum system 
size of a cubic lattice is 403, where each row (for convenience, in 1- 
direction) is represented by two computer words. In this way, the lattice is 
divided into two sublattices (ISODD, ISEVEN) each containing the odd, 
resp. even, lattice sites within all rows. 

The main parts of this program are quoted in Fig. 1. Helical boundary 
conditions ~6) are employed in 2-direction. With these boundary conditions 
the left-most spins of each 1-2 plane are coupled to the rightmost spins of 
the plane above (for convenience, left means 2-direction, above 3-direction, 
and backwards 1-direction). So elements of the arrays ISODD and ISEVEN 
can be treated consecutively, without any conditionally executed code. 
Periodic boundary conditions in 1-direction are an effect of the circular shift 
performed by the function SHIFT. Periodic boundary conditions in 3- 
direction are achieved by placing copies of the first and the last plane of the 
lattice above and below the real lattice. (7) These copies are not treated in the 
course of the Monte Carlo procedure but are updated after a complete sweep 
through the lattice. 

3. MULTISPIN CODING ON THE CDC CYBER 205  

A vector computer performs operations on a given set of data, termed a 
"vector," in an assembly-line fashion. The total execution time for a vector 



INTEGER COUNT 
C COUNT IS AN INTEGER FUNCTION TO COUNT THE BITS BET IN A 
C COMPUTER WORD SUPPLIED BY THE FORTRAN IV LIBRARY. 

DIMENSION IEX(7) 
C IEX CONTAINS THE FLIP PROBALITY IN AN UNNORMALIZED FLOATING 
C FORMAT, WHERE THE EXPONENT IS FORCED TO -47. THIS IS NEEDED 
C TO USE ONLY ONE MULTIPLY INSTRUCTION TO SUPPLY A RANDOM NUMBER 
C WHICH HAS ALWAYS THE EXPONENT -47 AND 48 BITS OF MANTISSA 
C SIGNIFICANCE. 

C SET SYSTEM SIZE 
L=40 

C SOME USEFUL CONSTANTS 
LPI-L+I 
LSQ=L~L 
LSQPL=LSQ+L 

TREATMENT OF THE ODD SPINS 
COMPUTE NUMBER OF ANTIPARALEL NEIGHBOURS 

DO i K=LPI,LSQPL 
IODD=ISODD(K) 
IEVEN=ISEVEN(K) 
IE:XOR(IODD,IEVEN)+KOR(IODD,SHIFT(IEVEN,57)) 

& +XOR(IODD,ISODD(K-I))+XOR(IODD,ISODD(K+I)) 
& +XOR(IODD,ISODD(K-L))+XOR(IODD,ISODD(K+L)) 

PREPARE LOOP OVER EO SPINS IN ONE WORD 
ICH - FLIP DECISION ACCUMULATOR 
KE - MASK FOR EXTRACTING ONE SPINS ENERGY 
KES - SHIFTCOUNT TO RIGHT JUSTIFY MASKED ENERGY VALUE 
KS - SHIFTCOUNT TO MOVE SIGN BIT TO DESIRED POSITION 
KSIGNM - MASK TO EXTRACT A NUMBERS SIGN IN 60 BIT OCTAL 

REPRESENTATION 
ICH=O 
RE=7 
KES-O 
KS:I 
KSIGNM:4OOOOOOOOOOOOOOOOOOOB 
DO B II:l,RO 
ISCR=AND(IE,KE) 
ISCR=SHIFT(ISCR,KES) 
ISCR=IEX(ISCR) 
IRAND=IRAND~MULT 
IDI=IRAND-IEX(INDEX+I) 
IDI:AND(IDI,KSIGNM) 
IDI=SHIFT(IDI,KS) 
ICH=OR(ICH,IDI) 
KE=SHIFT(KE,3) 
KES=KES-S 
KE=KS+3 
CONTINUE 
ISODD(K)=XOR(IODD,ICH) 
CONTINUE 

C TREATMENT OF THE ODD SPINS 

C CALCULATION OF THE MAGNETIZATION 
M-O 
DO 3 I3=LPI,LSQPL 
M=M+COUNT ( ISODD ( K'q ) +COUNT ( I • Eg"itN ( K ) ) 

S CONTINUE 

Fig. 1. Central parts of the modified scalar multispin coding program which the vectorization 
is based on. The lattice size is fixed at 403. A N D ,  OR, and XOR are intrinsic functions 
supplied by CDC FORTRAN. They perform the specified boolean operation on their arguments. 
The intrinsic function SHIFT shifts a word left circular by the number of bits specified in the 
second argument. 
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instruction is composed of a fixed amount, called startup time, and a time 
proportional to the number of data elements or the vector length. For 
efficient algorithms, the startup time is comparatively small to the instruction 
execution time. The longer the stream of data the more efficient is the use of 
the vector feature. 

The algorithm of a vector computer is similar to the scalar algorithm in 
which the elements of each row in 1-direction are scattered into two 
computer words (even/odd). In the vector algorithm, the whole lattice is 
divided into two vectors (ISRED and ISBLCK) consisting of multispin 
words. In the scalar algorithm, each word contains nonneighbored spins, 
whereas in the vector algorithm, each vector must contain nonneighbored 
spins because the entity treated by the machine is no longer a word but a 
vector. 

The multispin coding technique relies on unsigned integer arithmetic 
instructions. These instructions use the 48 right-most bits of a 64 bit word on 
a CDC Cyber 205. Thus one word can accomodate only 16 spins each, 
using three bits, while the 16 left-most bits are always zero. The 
programming of boundary conditions in 1-direction can be carried out as a 
single shift operation by changing them from periodic to fixed: the backward 
neighbor of the most backward and the forward neighbor of the most 
forward spin in each row are fixed at zero, resulting from a shift of the 16 
left-most bits of a machine word. The boundary conditions in the other 
directions do not present any difficulty. 

The processing of the neighbors in 1-direction is now discussed. When 
calculating the logical difference between a spin and its next neighbors in 1- 
direction, the latter must occupy the same bit position as the inspected spin. 
Since one neighbor is already in the correct bit position, the word containing 
the other neighbor must be shifted by three bit positions. The shift direction 
alternates its sign when passing a 1-2-plane boundary due to the sublattice 
structure. The correct shift count for every word of a sublattice vector is 
computed by the program into the vectors LOSC and NOSC (lines 27 to 32 
in Fig. 2). 

4. SPECIAL LANGUAGE ELEMENTS OF CDC 
CYBER 205  FORTRAN 

To assist the understanding of the given program (Fig. 2), some 
introduction to the CDC Cyber 205 FORTRAN "dialect" is useful here. This is 
only an overview. A more detailed description can be found in the 
appropriate reference manuals. (8'9) 



Monte Carlo Simulation of Ising Models by Multispin Coding 275 

PROGRAM ISING (OUTPUT,TAPE6=OUTPUT) GO001 

C PUT ALL DATA ON LARGE PAGES SO THAT ALL PAGES WILL 

C FIT ASSOCIATIVE REGISTERS AND NO PAGE FAULTS OCCOUR 

COMMON /LP/ 00002 
C ARRAYS FOR THE REGISTER SWAP INSTRUCTION 

IRSV(64), IEXL(64), 

C THE TWO SUBLATTICE ARRAYS 
ISRED(1088), ISBLCK(IO88), 

C ARRAY HOLDING RANDOM NUMBERS 
ICDC(1274), 

C ARRAY HOLDING ENERGY VALUES IN MULTISPIN CODING 

IE(I024), 
C ARRAY USED TO ACCUMULATE FLIP DECISIONS 

ICH(I024), 

C ARRAYS HOLDING SHIFT COUNTS (BOUNDARY CONDITION IN I-DIRECTION) 

L03C(I024), N03C(I024), 
C ARRAY USED FOR SCRATCH 

ISCR(I024), 
C ARRAY AND INTEGER EQUIVALENT FOR BOLTZMANN PROBABILTIES 

EX(7), IEX(7) 
C BIT ARRAYS EQUIVALENCED TO THE SUBLATTICES AND DESCRIPTOR NAMES 

BIT BREDI(34816),BREDB(34816),BBLCKI(34816),BBLCE2(34816), 00003 

BREDID,BRED2D,BBLCKID,BBLCK2D 
C DEFINE DESCRIPTOR NAMES 

DESCRIPTOR ISREDD, ISBLCKD, IED, ICDCD, ISCRD, 00004 

ISOD, ISUD, ISRD, ISLD, LOSCD, NOSCD, 
BREDID, BRED2D, BBLCKID, BBLCK2D 

LOGICAL LD2 00005 

C EQUVALENCE BIT ARRAYS TO SUBLATTICES (USED TO COMPUTE MAGNETIZATION) 

EQUIVALENCE(BREDI(1),ISRED(1)),(BRED2(1),ISRED(545)), 00006 

(BBLCKI(1),ISBLCK(1)),(BBLCK2(1),ISBLCK(545)) 
C 

C PRESETS FOR LATTICE AND BOLTZMANN FACTORS 

DATA ISRED/IO88*O/, ISBLCK/I088*O/, EX/7".9999999999/ 00007 

C 
C SET TEMPERATURE 

T = .9/.221655 00008 

C SET SYSTEM SIZE AND RELATED CONSTANTS 

L = 32 00009 
LPI = L + 1 00010 

LPIPI = LPI + 1 00011 
LPL = L + L 00012 

LSQ = L*L 00013 
LSQPL = LSQ + L O001a 

LSQPI = LSQ + 1 00015 
LCUBE = L*L*L 00016 
DEN = I./LCUBE 00017 

LPLPI = LPL + 1 00018 
LSQPLPI = LSQPL + i 00019 

KI6 = 18 00020 
KS = 3 0 0 0 2 1  

K7 = 7 00022 
KM47 : -47 00023 

C INITIALIZE RANDOM NUMBER GENERATOR WITH SEED ICDCO 

ICDCO=O 0 0 0 2 4  

CALL RANINIT(ICDC,ICDCO) 00025 
C PREPARE FOR SHIFTS 

LD2 - .FALSE. 00026 
DO 9B I = I,LSQ 00027 
IF(I.NE.L*(I/L)) LD2 = .NOT.LD2 00028 

LOSC(I) = -3 00029 
IF(LD2) GOTO 99 00030 

LOSC(I) = 3 00031 
99 NOSC(I) = - LOSC(1) 00032 

Fig. 2. Complete listing of the multispin coding program for a 32<lattice on a 
Cyber 205. Special language elements of Cyber 200 FORTRAN are explained in the text. 

CDC 
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C SET NONTRIVIAL BOLTZMANN FACTORS 
EX(1) = EXP(-12./T) 00033 
EX(2) = EXP(-8./T) 00034 
EX(3) - EXP(-4./T) 00035 

O NORMALIZE BOLTZMANN FACTORS TO (i,2~23-i) INTERVAL INTO ARRAY IEX 
DO 1 IND ~ 1,7 00036 
I=(2-*~47)~EX(IND) 00037 

1 IEX(IND)=SHIFT(I,-24) 00038 
C SETUP LOOKUP TABLE (IEXL) FOR VXTOV 

DO i01 II=l,7 00039 
DO i01 I=I,7 00040 
IEXL((II-I)~8+I)=OR(SHIFT(IEX(II),S2),IEX(I)) 00041 

i01 CONTINUE 00042 
C ASSIGN CONSTANT DESCRIPTORS TO CORRESPONDING VECTORS 

ASSIGN ISREDD, ISRED(LPI;LSQ) 00043 
ASSIGN ISBLCKD, ISBLCK(LPI;LSQ) 00044 
ASSIGN IED, IE(I;LSQ) 00045 
ASSIGN LOSCD, LOSC(I;LSQ) 00046 
ASSIGN NOSCD, NOSC(I;LSQ) 00047 
ASSIGN ISCRD, ISCR(I;LSQ) 00048 

C 
C SWEEPS THROUGH LATTICE 
C TOP OF LOOP FOR MONTE CARLO STEPS 

DO 6 ITIME : 1,SO 00049 
CALL SECOND(TO) 00050 

C TREATMENT OF THE RED-SPINS 
C i. ASSIGN LEFT - RIGHT - UPPER - LOWER NEIGHBOURS 

ASSIGN ISLD, ISBLCK(L;LSQ) 00051 
ASSIGN ISRD, ISBLCK(LPIPI;LSQ) 00052 
ASSIGN ISOD, ISBLCK(LPLPI;LSQ) 00053 
ASSIGN ISUD, ISBLCK(I;LSQ) 00054 

0 2. COMPUTE NUMBER OF ANTIPARALLEL NEIGNBOURS 
CALL Q8XORV(O,,ISREDD,,ISBLCKD,,IED) 00055 
CALL Q8XORV(O,,ISREDD,,ISLD,,ISCRD) 00056 
IED :IED + ISCRD 00057 
CALL Q8XORV(O,,ISREDD,,ISRD,,ISCRD) 00Q58 
IED =IED + ISCRD 00059 
CALL Q8XORV(O,,ISREDD,,ISOD,,ISCRD) 00060 
IED =IED + ISCRD 00061 
CALL Q8XORV(O,,ISREDD,,ISUD,,ISCRD) 00062 
IED - IED + ISCRD 00083 
CALL Q8SHIFTV(O,,ISBLCKD,,LOSCD,,ISCRD) 00064 
CALL QSXORV(O,,ISREDD,,ISCRD,,ISCRD) 00065 
IED - IED + ISCRD 00066 

C S. ATTEMPT TO FLIP THE RED SPINS 
CALL ISFLIP(IE,ISCR,ISRED(LPI),ICH,ICDC,IEXL,IRSV) 00067 

C TREATZENT OF THE BLACK-SPINS 
ASSIGN ISLD, ISRED(L;LSQ) 00068 
ASSIGN ISRD, ISRED(LPIPI;LSQ) 00069 
ASSIGN ISOD, ISRED(LPLPI;LSQ) 00070 
ASSIGN ISUD, ISRED(I;LSQ) 00071 
CALL Q8XORV(O,,IZBLCKD,,ISREDD,,IED) 00072 
CALL QSXORV(O,,ISBLCKD,,ISRD,,ISCRD) 00078 
IED =IED + ISCRD 00074 
CALL QSXORV(O,,ISBLCKD,,ISLD,,ISCRD) 00078 
IED - IED + ISCRD 00076 
CALL QSXORV(O,,ISBLCKD,,ISOD,,ISCRD) 00077 
IED :IED + ISCRD 00078 
CALL QSXORV(O,,ISBLCKD,,ISUD,,ISCRD) 00079 
IED =IED + ISCRD 00080 
CALL Q8SHIFTV(O,,ISREDD,,NOSCD,,ISCRD) 00081 
CALL QSXOHV(O,,ISBLCKD,,ISCRD,,ISCRD) 00082 
IED =IED + ISCRD 00083 
CALL ISFLIP(IE,ISCR,ISBLCK(LPI),ICH,ICDC,IEXL,IRSV) 00084 

Fig. 2 (continued) 
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C TAKE CARE OF PERIODIC BOUNDARY CONDITIONS 

ISBLCK(LSQPLPI;L) = ISBLCK(LPI;L) 00085 

ISBLCK(I;L] - ISBLCK(LSSPI;L) 00086 

ISRED(LSQPLPI;L) = ISRED(LPI;L) 00087 
ISRED(I;L) - ISRED(LSQPI;L) 00088 

C COMPUTE CPU TIME USED 

CALL SECOND(T1) 00089 
TTOT = T1 - TO 00090 

TPS = TTOT/(L~L~L) 00091 
FPS = I.OE-6~L~L~L/TTOT 00092 

WRITE(6,5] ITIME,TTOT,TPS~FPS 00093 
5 FORMAT(120,F20.B,F20.12,F20.6) 00094 

C BOTTOM OF LOOP FOR A MONTE STEP 

6 CONTINUE 00095 
C COMPUTE MAGNETIZATION USING VECTORIZED COUNT-COMMAND 

ASSIGN BREDID,BREDI(2049;S2768) 00098 
ASSIGN BRED2D,RRED2(I;92768) 00097 

ASSIGN BBLCKID,BBLCEI(2049;S2788) 00098 
ASSIGN BRLCK2D,BBLCK2(I;32768) 00099 

M : QSSCNT(BREDID) 00100 
M = M + Q8SCNT(BRED2D) 00101 

M - M + @8SCNT(BBLCKID) 00102 

M - M + Q8SCNT(BBLCK2D) O010S 

SM : (2*M - LCUBE)*DEN 00104 
C PRINT RESULT 

WRITE(6,7) SM 00105 
7 FORMAT(/F9.6//) O010B 

STOP 00107 

END 00108 
SUBROUTINE RANINIT(ICDC,ICDCO) 00001 

C SETUP RANDOM NUMBER SEED FOR SHIFT REGISTER RANDOM NUMBER GENERATOR 

C INITIALIZE FIRST 250 WORDS OF ARRAY ICDC WITH RANDOM BITS 

DIMENSION ICDC(1274) 00002 
C 

C SET SEED FOR CDC-SUPPLIED RANDOM NUMBER GENERATOR RANF 
CALL EANSET(ICDCO) O000S 

C LOOP OVER WORDS 

DO 200 IW=I,250 00004 
C ZERO ACCUMULATOR 

IC-O 00005 
C LOOP OVER HALFWORDS 

DO i00 IHW=I,2 00006 

C ACCOUNT FOR HALFWORD EXPONENT AND MANTISSA SIGN BIT 

IC=SHIFT(IC,9) 00007 
C LOOP OVER BITS IN A HALFWORD MANTISSA 

DO i00 IB=I,23 00008 

IC-SHIFT(IC,I) 00009 
C EACH BIT IS SET USING A RANF DECISION 

IF(RANF(X).GE.O.5) IC:OR(IC,I) 00010 
i00 CONTINUE 00011 

C STORE A RANDOM SEED WORD 

ICDC(IW)=IC 00012 
200 CONTINUE O001S 

RETURN 00014 

END 00015 
SUBROUTINE ISFLIP(IE,ISCR,IS,ICH,ICDC,IEXL,IRSV) 00001 

C THIS ROUTINE DOES THE FLIP DECISIONS USTNG THE MONTE CARLO METHOD 
C VARIABLE NAMES ARE THE SAME AS IN PROGRAM ISINO 
C 

C DEFINE INTEGER NAMES FOR DESCRIPTORS USED FOR ARRAY ICDC 
INTEGER AD,BD,CD,SEED 00002 

C ARRAYS HAVE THE SAME DIMENSIONS AS IN PROGRAM ISING 

DIMENSION IE(I024), ISCR(I024), IS(I024), ICH(I024), ICDC(1274) OOOOS 
DIMENSION IEXL(64), IRSV(84) 00004 

Fig. 2 (continued) 
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C DEFINE DESCRIPTOR VARIABLES 
DESCRIPTOR IED, ISCRD, ISD, ICHD, ICDCD, AD,BD,CD,SEED, IEXD 00005 
DESCRIPTOR IRSD 00006 
DESCRIPTOR ICDCDH, ISCRDH 00007 

C DEFINE TWO DATA CONSTANTS 
C KONE IS A BIT MASK OF 001 REPEATED 18 TIMES, RIGHT JUSTIFIED IN HEX 
C NOTATION. KM29 IS A CONSTANT TO SHIFT RIGHT CIRCULAR BY 29 PLACES 

DATA KONE/X'OOOO249249249249'/, KM29/35/ 00008 
C ASSIGN CONSTANT DESCRIPTORS 

ASSIGN IED, IE(I;I024) 00009 
ASSIGN ISCRD, ISCR(I;I024) 00010 
ASSIGN ISCRDH, IBCR(I;2048) 00011 
ASSIGN ISD, IS(I;I024) 00012 
ASSIGN ICHD, ICH(I;I024) 00013 
ASSIGN ICDCD, ICDC(251;I024) 00014 
ASSIGN ICDCDH, ICDC(251;2048) 00015 
ASSIGN AD, ICDC(I;I024) 00016 
ASSIGN BD, ICDC(148;I024) 00017 
ASSIGN CD, ICDC(I025;250) 00018 
ASSIGN SEED, ICDC(I;250) 00019 
ASSIGN IEXD, IEXL(I;64) 00020 
ASSIGN IRSD, IRSV(I;64) 00021 

C DEFINE REGISTER NUMBER OF REGISTER SWAP (80 SEX) 
IREG=I28 00022 

C DEFINE REGISTER BIT OFFSET USED BY THE VXTOV INSTRUCTION 
IREGB=IREG*64 0 0 0 2 3  

C MOVE FLIP PROBABILITY LOOKUP TABLE TO REGISTER FILE FOR FAST ACCESS 
C AT THE SAME TIME, THE OLD REGISTER CONTENTS ARE SAVED INTO ARRAY IRSV 

CALL QSSWAP(IEXD,IREG,IRSD) 0 0 0 2 4  
C CLEAR ARRAY RECEIVING FLIP DECISIONS 

ICHD=O 00025 
C SETUP A MASK FOR 2 SPINS (6 BIT) 

KE=63 00026 
C SETUP SHIFT COUNT TO RIGHT-JUSTIFY AN EXTRACTED ENERGY VALUE 

KES=O 00027 
C SETUP SHIFT COUNT TO POSITION RESULT OF SUBNV TO CORRECT BIT POSITION 

KS=-23  00028 
C ENTER HALFWORD REGISTER iO (A HEX) WITH THE MANTISSA SIGN BIT CONSTANT 

CALL Q8EXH(IO,X'800000') 00029 
C LOOP 8 TIMES TREATING 2 SPINS PER TRIP 

DO 3 II=l,8 00030 
C EXTRACT ENERGY (ANDV) AND RIGHT-JUSTIFY IT (SHIFTV) 

CALL Q8LINKV(X'IO') 00031 
CALL QSANDV(X'O9',,IED,,KE,,ISCRD) 00032 
CALL QSSHIFTV(X'OS',,ISCRD,,KES,,ISCRD) 00033 

C GET FLIP PROBABILITIES 
CALL QSVXTOV(X'OI',,ISCRD,,IBEGB,,ISCRD) 00034 

C COMPUTE NEW SET OF RANDOM NUMBERS 
CALL Q8XORV(O,,AD,,BD,,ICDCD) 00036 
CALL Q8VTOV(O,,CD,,,,SEED) 00036 

C SUBTRACT FLIP PROBABLITIES FROM RANDOM NUMBERS (SUBNV) AND EXTRACT 
C SIGN BIT (ANDV). THIS IS DONE USING HALFWORD INSTRUCTIONS. 

CALL QSLINKV(X'IO') 00037 
CALL Q8SUBNV(X'80',,ICDCDH,,ISCRDH,,ISCRDH) 00038 
CALL QBANDV(X'89',,ISCRDH,,IO,,ISCRDH) 00039 

C ADJUST POSITION OF SIGN BIT (SHIFTV) AND SAVE IT INTO ARRAY ICH (XORV) 
CALL 08LINKV(X'IO') 00040 
CALL Q8SHIFTV(X'OS',,IBCED,,KS,,ISCRD) 00041 
CALL QSXORV(O,,ISCRD,,ICHD,,ICHD) 00042 

O UPDATE MASK AND SHIFT VARIABLES 
CALL 08SHIFTI(KE,B,KE) 00043 
KES=KES-6 00044 
KS=KS+6 00045 

C BOTTOM OF LOOP 3 
3 CONTINUE 00046 

Fig. 2 (continued) 
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C POSITION THOSE BITS RESULTING FROM UPPER HALFWORDS DURING LOOP 3 
CALL Q8LINKV(X'IO') 00047 
CALL QSSHIFTV(X'OS',,ICHD,,KH29,,ISCRD) 00048 
CALL Q8XORV(O,,ISCRD,,ICHD,,ICHD] 000~9 

C MASK OUT USEFUL BITS ONLY 
CALL QSANDV(X'Og',,ICHB,,EONE,,ICHD) 00050 

C FLIP THOSE SPINS TO BE FLIPPED 
CALL QSXORV(O,,ICHD,,ISD,,ISB) 00051 

C RESTORE REGISTER FILE FROM ARRAY IRSV 
CALL QSSWAP(IRSD,IREG,) O0052 
RETURN 00058 
END 00054 

Fig. 2 (continued) 

4.1. The DESCRIPTOR Statement 

A vector is represented by descriptors. A descriptor consists of the bit 
address of the first element in bits 16-63 and the vector's length in bits 0-15. 
Bits are counted from left to the right starting with zero. All descriptors have 
to be declared as such and must be of the same type as the vectors which 
they are assigned to later on. The DESCRIPTOR statement is a nonex- 
ecutabte statement, and explicit- or implicit-type declarations accomplish 
this. 

4.2. The Vector ASSIGN Statement 

The vector ASSIGN statement assigns a vector to a descriptor variable. 
A vector in this context means some contigious part of an array defined by 
the first element and the vector length denoted as VECTOR(IFIRST; 
LENGTH). 

4.3. Coding of Vector Instructions 

There are two ways of coding vector instructions. The first is to use 
descriptors or vectors in the above sense in the usual VORTRAN arithmetic 
assignment statements. This means that the expression on the right-hand side 
is evaluated for all vector elements by vector instructions. If a scalar appears 
in the expression its value is repeated for each vector element. 

Not all vector hardware instructions are accessible by standard 
FORTRAN language elements. The remaining ones have to be coded by usage 
of special calls, which are in effect machine instructions. A special call for a 
vector instruction has the form 

CALL Q8XXXXV(G-bits,,A,,B,,C) 

where A, B, and C denote descriptors or scalar variables. The G-bits 
represent an 8-bit mask which further defines the operands and the 
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instruction. The vector represented by C is computed using the operation 
XXXX on the operands A and B, which may be either a scalar or a 
descriptor as selected by G-bits 3 and 4. 

In the presented program the following operations appear: 

Q8XORV - - a  bit-wise exclusive OR, 
Q8ANDV - - a  bit-wise AND, 
Q8SHIFTV--a  left circular shift A by B, 
Q8SUBNV--subtract  B from A giving normalized result C, 
Q8VTOV - -copy  A to C, 
Q8VXTOV--gather  elements directed by vector A from list B to vector C, 

in effect similar to C ( I ) =  B ( A ( I ) -  1) on a scalar machine, 

Q8-calls using other syntax are: 

Q8SHIFTI --shift  first operand by number (second operand) left circular, 
Q8EXH ----enter halfword register (first argument) with value (second 

agument), 
Q8SWAP -----exchange part of register file to and from main memory, 
Q8LINKV--combine  the next two vector instructions to one combined 

instruction, effectively feeding the second instruction first 
operand with result of the first instruction. 

4.4. Further Machine Dependencies 

As on most scalar computers, the CDC Cyber 205 has the option of 
bit-wise logical operations. We use OR, a logical OR of the arguments, and 
SHIFT, a left circular shift by a positive second argument and a right sign 
extended, end off shift by a negative second argument. There is also the 
option to operate on "halfwords." They consist of 32 bits, and two of them 
can be regarded as one 64-bit word. The operating speed on halfwords is 
twice that for words. In the given program, vectors consisting of halfwords 
are represented by descriptors named ending with the letter H. 

5. THE INNER-MOST LOOP 

The inner-most loop is transfered into subroutine ISFLIP (Fig. 2) for 
technical reasons. Except for the random number generator code (line 35 and 
36), this inner-most loop basically arises from the scalar code described 
above (Fig. 1) by straightforward vectorization neglecting for the moment 
halfwords and Q8LINKV instructions. 

The loop is executed only eight times rather than 16 times as expected 
for 16 spins per word. The reason for this is the simultaneous treatment of 
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two spins during one loop trip. In lines 32 and 33 we extract the energy 
values for two spins at a time using a mask of six bits resulting in an index 
between zero and 62. This index is used (line 34) to retrieve a word from a 
list of Boltzmann factors, which at that time is located in the register file for 
fast access. The list is specially arranged (see main program, lines 33 to 41) 
such that the left-most part of a word contains the flip probability for the left 
of the two spins and vice versa. The next two statements produce a random 
vector ICDC as explained below. Looking at the vectors ICDC and ISCR as 
halfword vectors having twice the length, the next two lines get clear as they 
arise from straightforward vectorization. Now the flip decision, decoded 
from the sign bits of the halfword vector ISCR, is shifted to a correct 
position and saved into vector ICH. Before the spin flips can be carried out 
(line 51), some manipulations are needed to adjust the bit positions within 
the vector ICH (lines 47 to 50). 

One of the most important parts of the algorithm is the random number 
generator. As the program requires 23-bit random numbers with large period, 
the CDC-supplied function RANF, which generates 47-bit equally 
distributed numbers cannot be used (and leads to problems(12)). A shift- 
register sequence random number generator introduced by Tausworthe(l~ 
is employed. It can be viewed as 64 parallely working 1-bit random number 
generators each with a period of 225~ The details of this implementation are 
of general interest and will be published separately. ~12) Since this random 
number generator produces integers in the interval [ 1 , 2 2 3 -  1], the 
Boltzmann factors are normalized to this interval (main program, lines 33 to 
38). 

In using the Q8SWAP special call, the instruction is valid only if the 
following conditions are taken care of: (1) the length of the array which is 
being swapped to or from the register file must be an even number, (2) its 
first element must have an even word address, and (3) the register number 
must be an even number too. Usable registers can be found by inspecting the 
register allocation map generated by the FORTRAN compiler. In our case, 
those marked FR_nn turned out to be not in use by any FORTRAn-generated 
code. 

6. D I S C U S S I O N  

In this paper we present a program which is useful to show basic 
methods to vectorize the multispin coding algorithm and to check out the 
power of general-purpose computers compared to existing special-purpose 
computers, w e  have shown that the speed of this program (21.2 million 
updates per second or 47 nsec per update) is comparable to those obtained 
on existing special-purpose machines. For a specific application, it might be 
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necessary to treat systems of arbitrary size and lattices with periodic 
boundary conditions. This can be done at the same speed by enlarging the 
number of  sublattices and more intelligent treatment of  boundary 
conditions. ~13) Moreover, for larger systems, larger vector lengths can be 
used to diminish the slackening effect of  startup times. 

Increasing the speed of  this algorithm on a C D C  Cyber 205 by further 
orders of  magnitude seems to be impossible. M. Creutz, P. Mitra, and K. J. 
M. Moriarty, however, have shown that it might be possible when the 
algorithm is changed. (14> They reach a speed of 24 million updates per 
second on a C D C  Cyber 176 using a microcanonical  Monte Carlo 
procedure. (~5) We cannot judge whether this method allows Monte Carlo 
simulations of  specific statistical systems in shorter times compared to the 
conventional canonical method since real times for simulation are not yet 
published. 
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